Skip to Main Content

Astronomy Courses

Astronomy Courses

PHYS 110 Mechanics

Newtonian dynamics, including kinematics, the laws of motion, gravitation, and rotational motion, are considered. The conservation laws for energy, momentum, and angular momentum are presented along with applications ranging from the atomic to the celestial. One laboratory meeting per week. NOTE: PHYS 110 and PHYS 120 are intended for both science and non-science majors. In PHYS 110 and PHYS 120, calculus concepts and techniques are introduced and taught as needed. No prior knowledge of calculus is necessary to undertake these courses, but proficiency with algebra and trigonometry is expected. One laboratory meeting per week.

PHYS 120 Heat, Waves, and Light

Thermodynamics explores the connections between heat and other forms of energy, temperature, and entropy, with applications to engines, refrigerators, and phase transitions. Oscillatory behavior and wave motion, with application to acoustic and optical phenomena. Geometric and wave optics, considering optical systems and the diverse phenomena associated with the wave nature of light. Techniques from calculus are introduced and taught as needed. Proficiency with algebra is expected. One laboratory meeting per week.

PHYS 161 The Search for Extraterrestrial Life

A survey of the scientific search for life beyond the Earth. This multidisciplinary course covers the story of the Earth as a planet, the history of life on Earth, the prospects of finding life in our solar system and beyond, the possibilities of detecting other technologically advanced civilizations, and ideas about interstellar travel. The course will focus on the implications concerning life in the Universe from discoveries of modern astronomy and how the search for extraterrestrial life fits into the modern scientific framework. Competence using algebra is expected.

PHYS 167 Astronomy

How measurements, from naked-eye observations to the most modern techniques, and their analysis have led to our current understanding of the size, composition, history, and likely future of our universe. Concepts and methodology developed through observations and laboratory exercises emphasizing simple measurements and the inferences to be drawn from them. Includes evening viewing sessions. Competence with algebra is expected.

PHYS 205 Modern Physics

An introduction to the two major shifts in our view of physics which have occurred since 1900, Einstein's Special Relativity and the wave-particle duality of nature. The course starts with a review of key experiments which show that classical mechanics and electrodynamics do not provide a satisfactory explanation for the observed phenomena, and introduces the relativity and quantum theory which provide such an explanation. Includes regular laboratory meetings.

PHYS 245 Observational Astronomy

An introduction to physics and astronomy research methods through observational astronomy. The techniques of modern observational study will be approached through analysis of photometric and spectroscopic optical images collected with departmental equipment. Observational projects selected and performed by students are at the heart of the course. The course includes an introduction to literature search, statistical analysis of uncertainties, and preparation of written and oral reports.

PHYS 316 Stellar Astrophysics

A survey at an intermediate level topics in stellar astrophysics. Possible topics include: the dynamics of star systems, star formation, stellar evolution, supernovae and black holes, stellar pulsation, and the chemical evolution of the universe.

PHYS 317 Extragalactic Astrophysics

A survey at an intermediate level of topics in extragalactic astrophysics and cosmology. Possible topics include: formation and evolution of galaxies, active galactic nuclei, dark matter, big bang cosmology, and general relativity.